论文标题

与Riemann-Liouville衍生物的分数Schrodinger方程相关的源识别问题

Time-dependent source identification problem for a fractional Schrodinger equation with the Riemann-Liouville derivative

论文作者

Ashurov, R. R., Shakarova, M. D.

论文摘要

schrödinger方程$ i \ partial_t^ρu(x,x,t)-u_ {xx}(x,x,x,t)= p(x)q(x) + f(x,x,t)$($ 0 <t \ leq t,\,0 <ρ<1 $),带有riemann-liouville derivative。研究了一个逆问题,其中,与$ u(x,t)$一起,也未知的源函数的时间依赖因子$ p(t)$。为了解决这个反问题,我们将其他条件$ b [u(\ cdot,t)] =ψ(t)$带有任意有限的线性功能$ b $。证明了解决问题的解决方案的存在和唯一定理。获得了稳定的不平等。应用方法使我们能够通过采取$ d^2/dx^2 $来研究类似的问题,一个任意椭圆差的操作员$ a(x,d)$,具有紧凑的逆。

The Schrödinger equation $i \partial_t^ρu(x,t)-u_{xx}(x,t) = p(t)q(x) + f(x,t)$ ( $0<t\leq T, \, 0<ρ<1$), with the Riemann-Liouville derivative is considered. An inverse problem is investigated in which, along with $u(x,t)$, also a time-dependent factor $p(t)$ of the source function is unknown. To solve this inverse problem, we take the additional condition $ B [u (\cdot,t)] = ψ(t) $ with an arbitrary bounded linear functional $ B $. Existence and uniqueness theorem for the solution to the problem under consideration is proved. Inequalities of stability are obtained. The applied method allows us to study a similar problem by taking instead of $d^2/dx^2$ an arbitrary elliptic differential operator $A(x, D)$, having a compact inverse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源