论文标题
用于PDE受限优化和控制的物理信息的神经网络
Physics-informed neural networks for PDE-constrained optimization and control
论文作者
论文摘要
科学和工程学中的一个基本问题是设计最佳的控制政策,将给定的系统转向预期的结果。这项工作提出了同时求解给定系统状态和最佳控制信号的控制物理信息的神经网络(控制PINNS),在符合基础物理定律的一个阶段框架中。先前的方法使用两个阶段的框架,该框架首先建模然后按顺序控制系统。相比之下,控制PINN将所需的最佳条件纳入其体系结构和损耗函数中。通过解决以下开环的最佳控制问题来证明控制PINN的成功:(i)一个分析问题,(ii)一维热方程,以及(iii)二维捕食者捕食者问题。
A fundamental problem in science and engineering is designing optimal control policies that steer a given system towards a desired outcome. This work proposes Control Physics-Informed Neural Networks (Control PINNs) that simultaneously solve for a given system state, and for the optimal control signal, in a one-stage framework that conforms to the underlying physical laws. Prior approaches use a two-stage framework that first models and then controls a system in sequential order. In contrast, a Control PINN incorporates the required optimality conditions in its architecture and in its loss function. The success of Control PINNs is demonstrated by solving the following open-loop optimal control problems: (i) an analytical problem, (ii) a one-dimensional heat equation, and (iii) a two-dimensional predator-prey problem.