论文标题

圆环上的二维大型整合模型

Two-dimensional massive integrable models on a torus

论文作者

Kostov, Ivan

论文摘要

描述了一个大量集成QFT的有限体积热力学,用浸入圆环中的宏伟的循环集合来描述,并通过与其交叉点相关的散射因子相互作用。通过Hubbard-Stratonovich转换将成对相互作用解耦后,对环的路径积分进行了明确评估。 HS磁场是全体形状场,具体取决于速度,可以在基本振荡器中扩展。在这些振荡器的Fock空间中,圆环分区函数表示为一定的期望值。在千篇一律的时期之一的极限上,有效的场理论变为平均场类型。平均场描述了无限体积热力学,该热力学通过热力学伯特·安萨兹(Bethe Ansatz)解决。

The finite-volume thermodynamics of a massive integrable QFT is described in terms of a grand canonical ensemble of loops immersed in a torus and interacting through scattering factors associated with their intersections. The path integral of the loops is evaluated explicitly after decoupling the pairwise interactions by a Hubbard-Stratonovich transformation. The HS fields are holomorphic fields depending on the rapidity and can be expanded in elementary oscillators. The torus partition function is expressed as certain expectation value in the Fock space of these oscillators. In the limit where one of the periods of the torus becomes asymptotically large, the effective field theory becomes mean field type. The mean field describes the infinite-volume thermodynamics which is solved by the Thermodynamical Bethe Ansatz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源