论文标题

一阶和二阶拓扑绝缘子的边界条件分析

Boundary Condition Analysis of First and Second Order Topological Insulators

论文作者

Wu, Xi, Kimura, Taro

论文摘要

我们在晶格上分析了Dirac Fermion模型的边界条件,该晶格描述了第一阶和二阶拓扑绝缘子。我们通过解决这些边界条件来获得边缘和铰链状态的分散关系,并澄清哈密顿对称性可能会对边界条件提供约束。我们还展示了散装对应关系的边缘类似物,其中间隙边缘状态的非平凡拓扑确保了铰链状态的无间隙。

We analytically study boundary conditions of the Dirac fermion models on a lattice, which describe the first and second order topological insulators. We obtain the dispersion relations of the edge and hinge states by solving these boundary conditions, and clarify that the Hamiltonian symmetry may provide a constraint on the boundary condition. We also demonstrate the edgehinge analog of the bulk-edge correspondence, in which the nontrivial topology of the gapped edge state ensures gaplessness of the hinge state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源