论文标题

重新审视差异私有广义线性模型

Differentially Private Generalized Linear Models Revisited

论文作者

Arora, Raman, Bassily, Raef, Guzmán, Cristóbal, Menart, Michael, Ullah, Enayat

论文摘要

我们研究$(ε,δ)$的问题 - 对具有凸损失的线性预测指标的私人学习。我们为两个损失函数子类提供结果。第一种情况是损失平稳且不负时,但不一定是Lipschitz(例如平方损失)。对于这种情况,我们建立了$ \ tilde {o} \ left(\ frac {\ vert w^*\ vert} {\ sqrt {n}} + \ min \ min \ left \ left \ frac {\ frac {\ vert w^** \Vert^2}{(nε)^{2/3}},\frac{\sqrt{d}\Vert w^*\Vert^2}{nε}\right\}\right)$, where $n$ is the number of samples, $d$ is the dimension of the problem, and $w^*$ is the minimizer of the population risk.除了对$ \ vert w^\ ast \ vert $的依赖外,我们的界限本​​质上都在所有参数中都紧密。特别是,我们显示了$ \tildeΩ\ left(\ frac {1} {\ sqrt {\ sqrt {n}}} + {\ min \ left \ weft \ {\ frac {\ vert w^*\ vert \ vert^\ vert^{4/3}}} {(nε){(Nis) \ frac {\ sqrt {d} \ vert w^*\ vert} {nε} \ right \}}}} \ right)$。我们还重新审视了先前研究的Lipschitz损失案例[SSTT20]。对于这种情况,我们缩小了现有工作的差距,并表明最佳速率是(按日志)$θ\ left(\ frac {\ vert w^*\ vert} {\ sqrt {\ sqrt {n}}} + \ min \ min \ min \ min \ left \ left \ frac {\ frac {\ vert {\ vert {\ vert {\ vert {\ vert {\ vert {\ vert {\ vert {\ vert w^*\ vert} {\ sqrt {nε}},\ frac {\ sqrt {\ sqrt {\ text {rank}} \ vert w^*\ vert} {nε} \ vert} {nε} \ right \ right \} \ right)这改善了高隐私制度中的现有工作。最后,我们的算法涉及一种私人模型选择方法,我们可以在没有$ \ vert w^*\ vert $的情况下达到陈述率。

We study the problem of $(ε,δ)$-differentially private learning of linear predictors with convex losses. We provide results for two subclasses of loss functions. The first case is when the loss is smooth and non-negative but not necessarily Lipschitz (such as the squared loss). For this case, we establish an upper bound on the excess population risk of $\tilde{O}\left(\frac{\Vert w^*\Vert}{\sqrt{n}} + \min\left\{\frac{\Vert w^* \Vert^2}{(nε)^{2/3}},\frac{\sqrt{d}\Vert w^*\Vert^2}{nε}\right\}\right)$, where $n$ is the number of samples, $d$ is the dimension of the problem, and $w^*$ is the minimizer of the population risk. Apart from the dependence on $\Vert w^\ast\Vert$, our bound is essentially tight in all parameters. In particular, we show a lower bound of $\tildeΩ\left(\frac{1}{\sqrt{n}} + {\min\left\{\frac{\Vert w^*\Vert^{4/3}}{(nε)^{2/3}}, \frac{\sqrt{d}\Vert w^*\Vert}{nε}\right\}}\right)$. We also revisit the previously studied case of Lipschitz losses [SSTT20]. For this case, we close the gap in the existing work and show that the optimal rate is (up to log factors) $Θ\left(\frac{\Vert w^*\Vert}{\sqrt{n}} + \min\left\{\frac{\Vert w^*\Vert}{\sqrt{nε}},\frac{\sqrt{\text{rank}}\Vert w^*\Vert}{nε}\right\}\right)$, where $\text{rank}$ is the rank of the design matrix. This improves over existing work in the high privacy regime. Finally, our algorithms involve a private model selection approach that we develop to enable attaining the stated rates without a-priori knowledge of $\Vert w^*\Vert$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源