论文标题

评估相关性原则:估计,驱动因素和对政策的影响

Evaluating the principle of relatedness: Estimation, drivers and implications for policy

论文作者

Li, Yang, Neffke, Frank

论文摘要

越来越多的研究文件表明,行业在某个地方的规模和成长取决于那里发现了多少相关活动。这个事实通常被称为“相关性原则”。但是,关于为什么我们观察相关性的原则,如何最好地确定哪些行业是相关的,或这种经验规律性如何帮助当地工业政策,尚无共识。我们对成千上万的规格进行结构化搜索,以确定可靠的(在样本外预测)的方法,以确定行业如何适合美国城市的当地经济体。为此,我们使用的数据使我们能够从观察哪些行业共同发生在机构,公司,城市和国家的投资组合中。不同的投资组合产生不同的相关性矩阵,每个矩阵都有助于预测当地行业的规模和增长。但是,我们的规范搜索不仅确定了改善此类预测绩效的方法,而且还揭示了有关相关性原则以及相关性模式的可解释性之间的重要权衡的新事实。我们使用这些见解来加深我们对城市中依赖路径依赖性发展的基础的理论理解,并扩大依赖于工业间相关性分析的现有政策框架。

A growing body of research documents that the size and growth of an industry in a place depends on how much related activity is found there. This fact is commonly referred to as the "principle of relatedness". However, there is no consensus on why we observe the principle of relatedness, how best to determine which industries are related or how this empirical regularity can help inform local industrial policy. We perform a structured search over tens of thousands of specifications to identify robust -- in terms of out-of-sample predictions -- ways to determine how well industries fit the local economies of US cities. To do so, we use data that allow us to derive relatedness from observing which industries co-occur in the portfolios of establishments, firms, cities and countries. Different portfolios yield different relatedness matrices, each of which help predict the size and growth of local industries. However, our specification search not only identifies ways to improve the performance of such predictions, but also reveals new facts about the principle of relatedness and important trade-offs between predictive performance and interpretability of relatedness patterns. We use these insights to deepen our theoretical understanding of what underlies path-dependent development in cities and expand existing policy frameworks that rely on inter-industry relatedness analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源