论文标题

VVV开放群集项目II。在八维参数空间上的37个开放簇的近红外序列

The VVV Open Cluster Project II. Near-infrared sequences of 37 open clusters on eight-dimensional parameter space

论文作者

Ramírez, K. Peña, Smith, L. C., Alegría, S. Ramírez, Chené, A. -N., González-Fernández, C., Lucas, P. W., Minniti, D.

论文摘要

开放簇是关键的共轴结构,可帮助我们了解星形的恒星形成,恒星的进化并追踪银河系的物理特性。在过去的几年中,通过获得准确的大规模恒星视差和沿着坚定的视线的正确运动,从田野中隔离开放群。尽管如此,由于大规模研究依赖于光学波长,但它们的完整性仍存在局限性。在这里,我们将开放群集序列扩展到淡淡的幅度,以使用VVV调查中的近红外数据来补充Gaia的光度法和星体信息。我们对37个开放式簇进行了均匀的分析,该簇实现了两种粗到精细的特征方法:极端反卷积的高斯混合物模型与8维参数空间上的无监督的机器学习方法相连。该过程使我们能够在近红外波长下将簇与田间分开。我们报告在样本中平均增加了$ \ sim $ 47 \%的新会员候选人(考虑到较高的会员资格概率p $ \ geqq $ 0.9)。这项研究是旨在揭示开放群集近红外序列的系列中的第二项。

Open clusters are key coeval structures that help us understand star formation, stellar evolution and trace the physical properties of our Galaxy. In the past years, the isolation of open clusters from the field has been heavily alleviated by the access to accurate large-scale stellar parallaxes and proper motions along a determined line of sight. Still, there are limitations regarding their completeness since large-scale studies rely on optical wavelengths. Here we extend the open clusters sequences towards fainter magnitudes complementing the Gaia photometric and astrometric information with near-infrared data from the VVV survey. We performed a homogeneous analysis on 37 open clusters implementing two coarse-to-fine characterization methods: extreme deconvolution Gaussian mixture models coupled with an unsupervised machine learning method on 8-dimensional parameter space. The process allowed us to separate the clusters from the field at near-infrared wavelengths. We report an increase of $\sim$47\% new member candidates on average in our sample (considering only sources with high membership probability p$\geqq$0.9). This study is the second in a series intended to reveal open cluster near-infrared sequences homogeneously.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源