论文标题

对比度多视图双曲线分层群集

Contrastive Multi-view Hyperbolic Hierarchical Clustering

论文作者

Lin, Fangfei, Bai, Bing, Bai, Kun, Ren, Yazhou, Zhao, Peng, Xu, Zenglin

论文摘要

分层聚类递归地将数据分配在越来越细的粒度上。在实际应用程序中,多视图数据变得越来越重要。这提出了一个较少研究的问题,即多视图层次聚类,以更好地了解多视图数据的层次结构。为此,我们提出了一种新型的基于神经网络的模型,即对比度多视线双曲线分层聚类(CMHHC)。它由三个组成部分,即多视图对齐学习,对齐功能相似性学习和连续的双曲线分层聚类。首先,我们以一种对比的方式使跨多个视图的样本级表示形式对齐,以捕获视图不变信息。接下来,我们同时利用歧管和欧几里得相似性来改善公制属性。然后,我们将表示形式嵌入双曲线空间中,并通过连续放松分层聚类损失来优化双曲线嵌入。最后,从优化的双曲线嵌入中解码了二进制聚类树。五个现实世界数据集的实验结果证明了该方法及其组件的有效性。

Hierarchical clustering recursively partitions data at an increasingly finer granularity. In real-world applications, multi-view data have become increasingly important. This raises a less investigated problem, i.e., multi-view hierarchical clustering, to better understand the hierarchical structure of multi-view data. To this end, we propose a novel neural network-based model, namely Contrastive Multi-view Hyperbolic Hierarchical Clustering (CMHHC). It consists of three components, i.e., multi-view alignment learning, aligned feature similarity learning, and continuous hyperbolic hierarchical clustering. First, we align sample-level representations across multiple views in a contrastive way to capture the view-invariance information. Next, we utilize both the manifold and Euclidean similarities to improve the metric property. Then, we embed the representations into a hyperbolic space and optimize the hyperbolic embeddings via a continuous relaxation of hierarchical clustering loss. Finally, a binary clustering tree is decoded from optimized hyperbolic embeddings. Experimental results on five real-world datasets demonstrate the effectiveness of the proposed method and its components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源