论文标题

朝着强大的和语义组织的潜在表示,用于无监督的文本样式转移

Towards Robust and Semantically Organised Latent Representations for Unsupervised Text Style Transfer

论文作者

Narasimhan, Sharan, Dey, Suvodip, Desarkar, Maunendra Sankar

论文摘要

最近的研究表明,基于自动编码器的方法成功地以零拍的方式使用未标记的数据集成功地执行了语言生成,流畅的句子插值和样​​式转移。此类模型的潜在空间几何形状足够好,可以在样式“粗粒”的数据集上执行,即单独的一小部分单词在句子中足以确定整体样式标签。最近的一项研究使用一种基于代币的扰动方法来映射“相似”句子(由Levenshtein距离低/高词重叠定义的“类似”句子在潜在空间中映射。 “相似性”的这种定义并没有在绘制潜在空间社区的绘制时,并未研究组成词的根本细微差别,因此在绘制潜在社区时未能识别具有不同基于样式的语义的句子。我们通过在连续的嵌入式空间上添加可调可调的噪声组件来介绍EPAAE(嵌入扰动的对抗自动编码器),该模型通过添加可调可调的噪声组件来完成此扰动模型。我们从经验上表明,该(a)产生一个更好组织的潜在空间,该空间在风格上相似,(b)在各种文本样式转移任务上的表现最佳,而不是类似的denoising styles启发的基线,并且(c)能够对样式转移强度进行细粒度的控制。我们还将文本样式传输任务扩展到NLI数据集,并表明这些更复杂的样式定义是通过Epaae学习的。据我们所知,以前尚未探索将样式转移到NLI任务的扩展。

Recent studies show that auto-encoder based approaches successfully perform language generation, smooth sentence interpolation, and style transfer over unseen attributes using unlabelled datasets in a zero-shot manner. The latent space geometry of such models is organised well enough to perform on datasets where the style is "coarse-grained" i.e. a small fraction of words alone in a sentence are enough to determine the overall style label. A recent study uses a discrete token-based perturbation approach to map "similar" sentences ("similar" defined by low Levenshtein distance/ high word overlap) close by in latent space. This definition of "similarity" does not look into the underlying nuances of the constituent words while mapping latent space neighbourhoods and therefore fails to recognise sentences with different style-based semantics while mapping latent neighbourhoods. We introduce EPAAEs (Embedding Perturbed Adversarial AutoEncoders) which completes this perturbation model, by adding a finely adjustable noise component on the continuous embeddings space. We empirically show that this (a) produces a better organised latent space that clusters stylistically similar sentences together, (b) performs best on a diverse set of text style transfer tasks than similar denoising-inspired baselines, and (c) is capable of fine-grained control of Style Transfer strength. We also extend the text style transfer tasks to NLI datasets and show that these more complex definitions of style are learned best by EPAAE. To the best of our knowledge, extending style transfer to NLI tasks has not been explored before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源