论文标题

有很多一致能量的格子

Lattices with lots of congruence energy

论文作者

Czédli, Gábor

论文摘要

1978年,由E.Hückel在量子化学方面的工作激励,I。Gutman介绍了有限简单图$ g $的能量的概念,作为$ g $的邻接矩阵特征值的绝对值之和。在撰写本文时,MathScinet搜索“ title =(Graph Energy)和Review text =(eigenvalue)”返回351个出版物,其中大多数遵循Gutman的定义。 有限代数$ a $ a $ a $的一致性$α$将$ a $变成一个简单的图:我们将$ x \ neq y \连接到边缘iff $(x,y)\inα$中的$ x \ neq y \;我们让en $(α)$成为此图的能量。我们介绍了CE $(a)$ a $ a $ a $ a $ a $ a $(a):= \ sum \ {$ en $(α):α\ in $ con $(a)\} $的一致性能量ce $(a)$ a $ a $ a $。令lat $(n)$和cda $(n)$代表$ n $ emlement lattices的类别以及任何类型的$ n $ emlement一致性分布代数。对于类$ \ Mathcal X $,让CE $(\ Mathcal X):= \ {$ ce $(a):a \ in \ Mathcal x \} $。我们证明了以下内容。 (1)对于$α\,在$,en $(α)/2 $中是$ a $的等价晶格的高度。 (2)CE(LAT($ n $))中最大的数字和第二大数字是$(n-1)\ CDOT 2^{n-1} $,对于$ n \ geq 4 $,$(n-1)\ cdot 2^{n-2}这些数字只有链条和格子的目睹,分别是一个恰好有一个两元素抗的抗。 (3)CE(CDA($ n $))的最大数量也是$(n-1)\ CDOT 2^{n-1} $,如果Ce $(a)=(n-1)=(n-1)\ cdot 2^{n-1} $,用于$ cda $(n)$(n)$,则是con $(a),然后是con $ con $ con $ con $ con $ con $ con $ con $ con $

In 1978, motivated by E. Hückel's work in quantum chemistry, I. Gutman introduced the concept of the energy of a finite simple graph $G$ as the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. At the time of writing, the MathSciNet search for "Title=(graph energy) AND Review Text=(eigenvalue)" returns 351 publications, most of which going after Gutman's definition. A congruence $α$ of a finite algebra $A$ turns $A$ into a simple graph: we connect $x\neq y\in A$ by an edge iff $(x,y)\inα$; we let En$(α)$ be the energy of this graph. We introduce the congruence energy CE$(A)$ of $A$ by CE$(A):=\sum\{$En$(α): α\in$ Con$(A)\}$. Let LAT$(n)$ and CDA$(n)$ stand for the class of $n$-element lattices and that of $n$-element congruence distributive algebras of any type. For a class $\mathcal X$, let CE$(\mathcal X):= \{$CE$(A): A\in \mathcal X\}$. We prove the following. (1) For $α\in A$, En$(α)/2$ is the height of $α$ in the equivalence lattice of $A$. (2) The largest number and the second largest number in CE(LAT($n$)) are $(n-1)\cdot 2^{n-1}$ and, for $n\geq 4$, $(n-1)\cdot 2^{n-2}+2^{n-3}$; these numbers are only witnessed by chains and lattices with exactly one two-element antichain, respectively. (3) The largest number in CE(CDA($n$)) is also $(n-1)\cdot 2^{n-1}$, and if CE$(A)=(n-1)\cdot 2^{n-1}$ for an $A\in$ CDA$(n)$, then Con$(A)$ is a boolean lattice with size $|$Con$(A)|=2^{n-1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源