论文标题
费米液体理论中非常规对称性破坏的严格形式主义及其在FESE中的列表中的应用
A Rigorous Formalism of Unconventional Symmetry Breaking in Fermi Liquid Theory and Its Application to Nematicity in FeSe
论文作者
论文摘要
由于非局部阶参数而引起的非常规的对称性破坏,在许多密切相关的金属中引起了很大的关注。著名的例子是基于Fe的超导体中的列表和Kagome金属中的戴星电荷密度顺序。金属中这种异国情调的对称性破裂是现代冷凝物理物理学的核心问题,而与公认的超导性理论相比,其理论基础尚不清楚。为了克服这一难度,我们在这里介绍了将非局部顺序参数推广到Luttinger-Ward(LW)费米液体理论的“形式因素”。然后,我们构建了“密度波方程式”的严格形式主义,该形式与热力学稳定的外形相似,类似于超导间隙方程。此外,还提出了Ginzburg-Landau自由能的严格表达,以计算各种热力学特性。在下一阶段,我们通过使用代表由于Paramagnons之间的干扰而代表自由能增益的一环LW函数,将派生的形式主义应用于典型的基于Fe的超导体FESE。自然要解释以下关键实验:(i)由于债券+轨道订单低于$ t_c $,LIFSHITZ过渡(=电子口袋的消失)。 (ii)较高t在较高t处的列敏感性的居里 - 韦斯行为,以及较低t近t的curie-weiss行为的偏差。 (iii)特定热量跳跃以$ t_c $,$Δc/t_c \ propto t_c^b $与$ b \ sim 3 $的比例关系。 (请注意,BCS理论中的B = 0。)这些结果得出的结论是,由于“ Paramagnon干扰机制”,FESE中的nematicity是键+轨道顺序。本理论为解决各种非常规的相变系统铺平了道路。
Unconventional symmetry breaking due to nonlocal order parameters has attracted considerable attention in many strongly correlated metals. Famous examples are the nematic order in Fe-based superconductors and the star-of-David charge density order in kagome metals. Such exotic symmetry breaking in metals is a central issue of modern condensed matter physics, while its theoretical foundation is still unclear in comparison with the well-established theory of superconductivity. To overcome this difficulty, here we introduce the "form factor" that generalizes the nonlocal order parameter into the Luttinger-Ward (LW) Fermi liquid theory. We then construct a rigorous formalism of the "density-wave equation" that gives the thermodynamically stable form factor, similarly to the superconducting-gap equation. In addition, a rigorous expression of the Ginzburg-Landau free-energy for the unconventional order is presented to calculate various thermodynamic properties. In the next stage, we apply the derived formalism to a typical Fe-based superconductor FeSe, by using the one-loop LW function that represents the free-energy gain due to the interference among paramagnons. The following key experiments are naturally explained: (i) Lifshitz transition (=disappearance of an electron-pocket) due to the bond+orbital order below $T_c$. (ii) Curie-Weiss behavior of the nematic susceptibility at higher T, and the deviation from the Curie-Weiss behavior at lower T near the nematic quantum-critical-point. (iii) Scaling relation of the specific heat jump at $T_c$, $ΔC/T_c \propto T_c^b$ with $b \sim 3$. (Note that b=0 in the BCS theory.) These results lead to a conclusion that the nematicity in FeSe is the bond+orbital order due to the "paramagnon interference mechanism". The present theory paves the way for solving various unconventional phase transition systems.