论文标题
使用Zernike Wavefront传感器对Keck主镜活塞的天空重建
On-sky reconstruction of Keck Primary Mirror Piston Offsets using a Zernike Wavefront Sensor
论文作者
论文摘要
下一代大的地面和空间光学望远镜将分割主镜。共同强调这些段需要一个敏感的波前传感器,能够测量相位不连续性。 Zernike Wavefront传感器(ZWFS)是一种被动波前传感器,已被证明可以在实验室设置中以图表的精度感知分割的分段摩尔活塞,尖端和倾斜度。我们介绍了在W.M.的分段孔径望远镜上喂养ZWF的第一个自适应光学的结果。凯克天文台的凯克二世。在Keck Planet Imager和特征器(KPIC)光路径中,ZWFS蒙版使用INGAAS检测器(Cred2)在H波段中运行。我们用已知量的主镜子的段扎为主镜的片段,并使用ZWFS和相位检索方法测量镜像的形状,并在设施红外成像仪Nirc2中获取的数据上进行了检索。在后一种情况下,我们采用了略微散制的NIRC2图像和修改的Gerchberg-Saxton相位检索算法来估计应用的波前误差。在比较相位检索和ZWFS重建时,我们发现良好的一致性,平均测量值分别为408 +/- 23 nm和394 +/- 46 nm,对于由400 nm的光路差(OPD)的400 nm的三个段(OPD)。应用各种OPD,由于我们观察到的自适应光学残差的平均值不足,因此我们仅限于100 nm OPD施加活塞。我们还提供了ZWFS的模拟,以帮助解释ZWFS重建数据中观察到的系统偏移。
The next generation of large ground- and space-based optical telescopes will have segmented primary mirrors. Co-phasing the segments requires a sensitive wavefront sensor capable of measuring phase discontinuities. The Zernike wavefront sensor (ZWFS) is a passive wavefront sensor that has been demonstrated to sense segmented-mirror piston, tip, and tilt with picometer precision in laboratory settings. We present the first on-sky results of an adaptive optics fed ZWFS on a segmented aperture telescope, W.M. Keck Observatory's Keck II. Within the Keck Planet Imager and Characterizer (KPIC) light path, the ZWFS mask operates in the H-band using an InGaAs detector (CRED2). We piston segments of the primary mirror by a known amount and measure the mirror's shape using both the ZWFS and a phase retrieval method on data acquired with the facility infrared imager, NIRC2. In the latter case, we employ slightly defocused NIRC2 images and a modified Gerchberg-Saxton phase retrieval algorithm to estimate the applied wavefront error. We find good agreement when comparing the phase retrieval and ZWFS reconstructions, with average measurements of 408 +/- 23 nm and 394 +/- 46 nm, respectively, for three segments pistoned by 400 nm of optical path difference (OPD). Applying various OPDs, we are limited to 100 nm OPD of applied piston due to our observations' insufficient averaging of adaptive optics residuals. We also present simulations of the ZWFS that help explain the systematic offset observed in the ZWFS reconstructed data.