论文标题
$ k $用户干扰网络中最佳与二进制电源控制的极端GDOF增益为$θ(\ sqrt {k})$
The Extremal GDoF Gain of Optimal versus Binary Power Control in $K$ User Interference Networks Is $Θ(\sqrt{K})$
论文作者
论文摘要
这项工作利用广义自由度(GDOF)分析和极端网络理论的思想,研究了对二进制(ON/OFF)功率控制的最佳功率控制的极端增益,尤其是在大干扰网络中,以寻求新的理论见解。尽管数值研究已经确定,在大多数实用的环境中,二进制功率控制接近最佳,但极端分析不仅表明存在从最佳功率控制中获得的收益可能非常重要,而且从GDOF的角度来看,此类收益的最大值范围也是如此。作为其主要贡献,这项工作明确地将最佳的极端GDOF代表了对二进制电源控制的最佳GDOF增益为$θ\ left(\ sqrt {k} \ right)$ for $ k $。特别是,每个$ k $的$ \ lfloor \ sqrt {k} \ rfloor $和$ 2.5 \ sqrt {k} $之间的极端增益在$ \ lfloor \ sqrt {k} \ rfloor $之间。对于$ k = 2,3,4,5,6美元的用户,确切的极值收益分别为$ 1、3/2、2、9/4 $和$ 41/16 $。显示出实现极大增益的网络可以解释为多层异质网络。值得注意的是,由于他们专注于渐近分析,因此极大收益的尖锐特征主要是从理论角度来看的,而不是与传统的二进制二进制二进制能力控制通常在实用的,非偶然的环境中接近最佳的矛盾。
Using ideas from Generalized Degrees of Freedom (GDoF) analyses and extremal network theory, this work studies the extremal gain of optimal power control over binary (on/off) power control, especially in large interference networks, in search of new theoretical insights. Whereas numerical studies have already established that in most practical settings binary power control is close to optimal, the extremal analysis shows not only that there exist settings where the gain from optimal power control can be quite significant, but also bounds the extremal values of such gains from a GDoF perspective. As its main contribution, this work explicitly characterizes the extremal GDoF gain of optimal over binary power control as $Θ\left(\sqrt{K}\right)$ for all $K$. In particular, the extremal gain is bounded between $\lfloor \sqrt{K}\rfloor$ and $2.5\sqrt{K}$ for every $K$. For $K=2,3,4,5,6$ users, the precise extremal gain is found to be $1, 3/2, 2, 9/4$ and $41/16$, respectively. Networks shown to achieve the extremal gain may be interpreted as multi-tier heterogeneous networks. It is worthwhile to note that because of their focus on asymptotic analysis, the sharp characterizations of extremal gains are valuable primarily from a theoretical perspective, and not as contradictions to the conventional wisdom that binary power control is generally close to optimal in practical, non-asymptotic settings.