论文标题

使用迭代$δ$空间的动态无人机轨迹的两步计划

Two-step Planning of Dynamic UAV Trajectories using Iterative $δ$-Spaces

论文作者

Schräder, Sebastian, Schleich, Daniel, Behnke, Sven

论文摘要

无人机轨迹计划通常是在两步方法中进行的,其中低维路径被完善至动态轨迹。但是,所得的轨迹仅在局部最佳。另一方面,高维状态空间中的直接计划会产生全球最佳解决方案,但耗时,因此对于时间约束的应用程序不可行。为了解决这个问题,我们提出了$δ$ - 空格,这是一种修剪的高维状态空间表示轨迹改进。它不仅包含一个较低维路径周围的区域,还包括多个近乎最佳路径的结合。因此,它不太容易发生局部最小值。此外,我们使用增加尺寸的$δ$空格提出了任何时间算法。我们将我们的方法与基于最新的搜索轨迹计划方法进行比较,并在2D和3D环境中对其进行评估,以生成二阶和三阶UAV轨迹。

UAV trajectory planning is often done in a two-step approach, where a low-dimensional path is refined to a dynamic trajectory. The resulting trajectories are only locally optimal, however. On the other hand, direct planning in higher-dimensional state spaces generates globally optimal solutions but is time-consuming and thus infeasible for time-constrained applications. To address this issue, we propose $δ$-Spaces, a pruned high-dimensional state space representation for trajectory refinement. It does not only contain the area around a single lower-dimensional path but consists of the union of multiple near-optimal paths. Thus, it is less prone to local minima. Furthermore, we propose an anytime algorithm using $δ$-Spaces of increasing sizes. We compare our method against state-of-the-art search-based trajectory planning methods and evaluate it in 2D and 3D environments to generate second-order and third-order UAV trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源