论文标题
多代理动力学的概率对称性
Probabilistic Symmetry for Multi-Agent Dynamics
论文作者
论文摘要
学习多代理动力学是机器人技术和自动驾驶中广泛应用的核心AI问题。尽管大多数现有的作品都集中在确定性预测上,但产生概率预测来量化不确定性和评估风险对于下游决策任务,例如运动计划和避免碰撞是至关重要的。多代理动力学通常包含内部对称性。通过利用对称性,特别是旋转模糊性,我们不仅可以提高预测准确性,而且可以提高不确定性校准。我们引入了能量评分,这是一个适当的评分规则,以评估概率预测。我们提出了一种新型的深层动力学模型,概率的等效连续卷积(PECCO),用于对多代理轨迹的概率预测。 PECCO扩展了持续卷积,以建模多种试剂的关节速度分布。它使用动态集成来传播从速度到位置的不确定性。在合成数据集和现实世界中,与非等级基线相比,PECCO在准确性和校准方面都显示出显着提高。
Learning multi-agent dynamics is a core AI problem with broad applications in robotics and autonomous driving. While most existing works focus on deterministic prediction, producing probabilistic forecasts to quantify uncertainty and assess risks is critical for downstream decision-making tasks such as motion planning and collision avoidance. Multi-agent dynamics often contains internal symmetry. By leveraging symmetry, specifically rotation equivariance, we can improve not only the prediction accuracy but also uncertainty calibration. We introduce Energy Score, a proper scoring rule, to evaluate probabilistic predictions. We propose a novel deep dynamics model, Probabilistic Equivariant Continuous COnvolution (PECCO) for probabilistic prediction of multi-agent trajectories. PECCO extends equivariant continuous convolution to model the joint velocity distribution of multiple agents. It uses dynamics integration to propagate the uncertainty from velocity to position. On both synthetic and real-world datasets, PECCO shows significant improvements in accuracy and calibration compared to non-equivariant baselines.