论文标题
基于机器学习的框架,用于适用于航空公司定价的价格敏感性估算
Machine Learning based Framework for Robust Price-Sensitivity Estimation with Application to Airline Pricing
论文作者
论文摘要
我们考虑在具有特征依赖性价格敏感性的情况下,产品的动态定价问题。开发可以稳健估算价格弹性的实用算法,尤其是在没有购买的信息(损失)的信息时,可以推动此类自动定价系统,这是许多行业面临的挑战。基于泊松半参数方法,我们构建了一个灵活但可解释的需求模型,在该模型中,相关的零件是参数,而模型的剩余(滋扰)部分是非参数的,并且可以通过复杂的机器学习(ML)技术进行建模。通过直接的一阶段回归技术对该模型的价格敏感性参数的估计可能导致由于正则化而导致估计值。为了解决这一问题,我们提出了一种两阶段估计方法,该方法使价格敏感性参数的估计构成了模型的滋扰参数估计器中的偏见。在第一阶段,我们使用复杂的ML估计器(例如深神经网络)构建了观察到的购买和价格的估计量。利用第一阶段的估计器,在第二阶段,我们利用贝叶斯动态通用线性模型来估计价格敏感性参数。我们测试了拟议的估计方案的性能,这些计划对航空公司行业的模拟和真实销售交易数据进行了测试。我们的数值研究表明,在现实的模拟设置中,我们提出的两阶段方法将价格敏感性参数的估计误差从25 \%降低到4%。这项工作中提出的两阶段估计技术使从业人员能够利用现代ML技术来稳健地估计价格敏感性,同时仍保持可解释性并易于验证其各种组成部分。
We consider the problem of dynamic pricing of a product in the presence of feature-dependent price sensitivity. Developing practical algorithms that can estimate price elasticities robustly, especially when information about no purchases (losses) is not available, to drive such automated pricing systems is a challenge faced by many industries. Based on the Poisson semi-parametric approach, we construct a flexible yet interpretable demand model where the price related part is parametric while the remaining (nuisance) part of the model is non-parametric and can be modeled via sophisticated machine learning (ML) techniques. The estimation of price-sensitivity parameters of this model via direct one-stage regression techniques may lead to biased estimates due to regularization. To address this concern, we propose a two-stage estimation methodology which makes the estimation of the price-sensitivity parameters robust to biases in the estimators of the nuisance parameters of the model. In the first-stage we construct estimators of observed purchases and prices given the feature vector using sophisticated ML estimators such as deep neural networks. Utilizing the estimators from the first-stage, in the second-stage we leverage a Bayesian dynamic generalized linear model to estimate the price-sensitivity parameters. We test the performance of the proposed estimation schemes on simulated and real sales transaction data from the Airline industry. Our numerical studies demonstrate that our proposed two-stage approach reduces the estimation error in price-sensitivity parameters from 25\% to 4\% in realistic simulation settings. The two-stage estimation techniques proposed in this work allows practitioners to leverage modern ML techniques to robustly estimate price-sensitivities while still maintaining interpretability and allowing ease of validation of its various constituent parts.