论文标题
在一个可解决的任何类似于任何人的自旋梯子中的子晶格纠缠
Sub-lattice entanglement in an exactly solvable anyon-like spin ladder
论文作者
论文摘要
我们引入了一个可集成的自旋梯子模型,并研究其精确的解决方案,相关函数和纠缠属性。该模型支持两种粒子类型(对应于均匀和奇数的子层),因此散射阶段是常数:与自由费米子的散射的粒子,而粒子间相移是通过交互参数调节的常数。因此,旋转梯子与任何人模型具有相似之处。我们提出了频谱和相关函数的确切结果,并通过数值手段研究了子晶格纠缠。
We introduce an integrable spin ladder model and study its exact solution, correlation functions, and entanglement properties. The model supports two particle types (corresponding to the even and odd sub-lattices), such that the scattering phases are constants: particles of the same type scatter as free fermions, whereas the inter-particle phase shift is a constant tuned by an interaction parameter. Therefore, the spin ladder bears similarities with anyonic models. We present exact results for the spectrum and correlation functions, and we study the sub-lattice entanglement by numerical means.