论文标题
关于海森堡铁磁性自旋链的广义不均匀非线性schrodinger方程的多苏里顿解决方案
On multi-soliton solutions to a generalized inhomogeneous nonlinear Schrodinger equation for the Heisenberg ferromagnetic spin chain
论文作者
论文摘要
在(1+1) - 在无穷大的零边界条件下(零边界条件下)中的Heisenberg Ferromagnetic Spin链系统的广义不均匀的高阶非线性schrodinger(Gihnls)方程。首先进行光谱分析以在真实轴上产生相关的矩阵riemann-hilbert问题。然后,通过将跳跃矩阵作为身份矩阵来求解所得的矩阵riemann-hilbert问题,可以实现通用的亮度多 - 索尔顿溶液到Gihnls方程。此外,一单溶剂和两索溶液是通过数字编写和分析的。
A generalized inhomogeneous higher-order nonlinear Schrodinger (GIHNLS) equation for the Heisenberg ferromagnetic spin chain system in (1+1)-dimensions under zero boundary condition at infinity is taken into account. The spectral analysis is first performed to generate a related matrix Riemann-Hilbert problem on the real axis. Then, through solving the resulting matrix Riemann-Hilbert problem by taking the jump matrix to be the identity matrix, the general bright multi-soliton solutions to the GIHNLS equation are attained. Furthermore, the one- and two-soliton solutions are written out and analyzed by figures.