论文标题
超图心理学的信息理论方法
An information-theoretic approach to hypergraph psychometrics
论文作者
论文摘要
心理网络方法建议将症状或问卷项目视为相互联系的节点,它们之间的链接反映了成对的统计依赖性评估的横截面,时间序列或面板数据。这些网络构成了评估节点/指标的相互作用和相对重要性的既定方法,为其他方法(例如因素分析)提供了重要的补充。但是,仅将建模集中在成对关系上可以忽略以高阶相互依赖形式的三个或更多变量组共享的潜在关键信息。为了克服这一重要限制,我们在这里提出了一个基于超图作为心理测量模型的信息理论框架。由于超图中的边缘能够将几个节点纳入在一起,因此该扩展可以提供更丰富的心理变量中可能存在的相互作用的表示。我们的结果表明,心理测量超图如何在模拟或最先进的,重新分析的心理测量学数据集上突出有意义的冗余和协同的相互作用。总体而言,我们的框架扩展了当前的网络方法,同时导致了新的方法来评估与其他方法不同的数据,从而扩展了心理测量工具箱,并开放了有希望的途径以进行未来的研究。
Psychological network approaches propose to see symptoms or questionnaire items as interconnected nodes, with links between them reflecting pairwise statistical dependencies evaluated cross-sectional, time-series, or panel data. These networks constitute an established methodology to assess the interactions and relative importance of nodes/indicators, providing an important complement to other approaches such as factor analysis. However, focusing the modelling solely on pairwise relationships can neglect potentially critical information shared by groups of three or more variables in the form of higher-order interdependencies. To overcome this important limitation, here we propose an information-theoretic framework based on hypergraphs as psychometric models. As edges in hypergraphs are capable of encompassing several nodes together, this extension can thus provide a richer representation of the interactions that may exist among sets of psychological variables. Our results show how psychometric hypergraphs can highlight meaningful redundant and synergistic interactions on either simulated or state-of-art, re-analyzed psychometric datasets. Overall, our framework extends current network approaches while leading to new ways of assessing the data that differ at their core from other methods, extending the psychometric toolbox and opening promising avenues for future investigation.