论文标题

开放设定的半监督学习,用于3D点云理解

Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding

论文作者

Shi, Xian, Xu, Xun, Zhang, Wanyue, Zhu, Xiatian, Foo, Chuan Sheng, Jia, Kui

论文摘要

对3D点云的语义理解依赖于具有大量注释数据的学习模型,在许多情况下,这是昂贵或难以收集的。这导致了3D点云的半监督学习(SSL)的新兴研究兴趣。通常在SSL中假定未标记的数据是从与标记的数据相同的分布中绘制的。但是,这个假设在现实的环境中很少成立。盲目使用未分布(OOD)未标记的数据可能会损害SSL性能。在这项工作中,我们建议通过样本加权有选择地利用未标记的数据,以便仅优先考虑有效的未标记数据。为了估算权重,我们采用双层优化框架,该框架在固定验证集上迭代优化了元主体,并且在训练集上进行了任务对象。面对有效的双层优化器的不稳定,我们进一步提出了三种正则化技术,以增强训练稳定性。 3D点云分类和分割任务的广泛实验验证了我们提出的方法的有效性。我们还证明了更有效的培训策略的可行性。

Semantic understanding of 3D point cloud relies on learning models with massively annotated data, which, in many cases, are expensive or difficult to collect. This has led to an emerging research interest in semi-supervised learning (SSL) for 3D point cloud. It is commonly assumed in SSL that the unlabeled data are drawn from the same distribution as that of the labeled ones; This assumption, however, rarely holds true in realistic environments. Blindly using out-of-distribution (OOD) unlabeled data could harm SSL performance. In this work, we propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized. To estimate the weights, we adopt a bi-level optimization framework which iteratively optimizes a metaobjective on a held-out validation set and a task-objective on a training set. Faced with the instability of efficient bi-level optimizers, we further propose three regularization techniques to enhance the training stability. Extensive experiments on 3D point cloud classification and segmentation tasks verify the effectiveness of our proposed method. We also demonstrate the feasibility of a more efficient training strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源