论文标题
多分辨率SPH框架:应用于多相流体结构相互作用
A multi-resolution SPH framework: Application to multi-phase fluid-structure interactions
论文作者
论文摘要
在以前的工作中,Zhang等人。提出了一种用于流体结构相互作用(FSI)的多分辨率平滑粒子流体动力学(SPH)方法,同时实现了优化的计算效率,同时保持良好的数值鲁棒性和准确性。 在本文中,该多分辨率的SPH框架将不同的空间 - 周期离散化用于不同的子系统,扩展到涉及大密度比的多相流以及与刚性或柔性结构相互作用。为此,通过利用不同的密度重新引导策略来引入简单有效的多相模型,而不是分别应用不同的公式将质量保护实施到光和重型阶段,以实现对两者使用相同人工速度的目标。为了消除不自然的空隙和不切实际的相分离,同时减少了数值耗散,通过施加暂时的局部流量状态依赖性背景压力来重写传输速度公式。 为了处理三个点的单个和多分辨率方案中的FSI耦合,采用了单方面的基于Riemann的固体边界条件。研究了一组涉及具有高密度比,复杂界面和多相FSI的多相流的示例,以证明本方法的效率,准确性和鲁棒性。本文介绍的验证以及张等人的原始论文中报道的验证。在研究单相FSI的情况下,就多物理应用的计算效率而言,当前的多分辨率SPH框架稳定了。
In the previous work, Zhang et al. proposed a multi-resolution smoothed particle hydrodynamics (SPH) method for fluid-structure interactions (FSI) with achieving an optimized computational efficiency meanwhile maintaining good numerical robustness and accuracy. In the present paper, this multi-resolution SPH framework where different spatial-temporal discretizations are applied for different sub-systems is extended to multi-phase flows involving large density ratio and interacting with rigid or flexible structure. To this end, a simple and efficient multi-phase model is introduced by exploiting different density reinitialization strategies other than applying different formulations to implement mass conservation to the light and heavy phases, respectively, to realize the target of using same artificial speed of sound for the both. To eliminate the unnatural voids and unrealistic phase separation meanwhile decrease the numerical dissipation, the transport velocity formulation are rewritten by applying temporal local flow state dependent background pressure. To handle the FSI coupling in both single- and multi-resolution scenarios in the triple point, the one-sided Riemann-based solid boundary condition is adopted. A set of examples involving multi-phase flows with high density ratio and complex interface and multi-phase FSI are studied to demonstrate the efficiency, accuracy and robustness of the present method. The validations presented herein and those reported in the original paper of Zhang et al. where single-phase FSI is studied put the present multi-resolution SPH framework in good stead in terms of computational efficiency for multi-physics applications.