论文标题

广义的完美差异及其应用于可变重量几何正交代码

Generalized perfect difference families and their application to variable-weight geometric orthogonal codes

论文作者

Su, Xiaowei, Wang, Lidong, Tian, Zihong

论文摘要

Wang等人在几何正交代码(GOC)中的应用。介绍了广义完美差异系列(PDF)的概念,并建立了GOCS与某种类型的广义PDF之间的等效性。基于关系,我们在本文中讨论了广义$(N \ Times M,K,1)$ -PDF的存在问题。通过使用一些辅助设计,例如半完美组可分割的设计和几种递归构造,我们证明存在概括(n \ times m,\ {3,4 \},1)$ - pdf时,仅当$ nm \ equiv1 \ equiv1 \ pmod pmod {6} $时才存在。除了几个值外,也可能完全解决了广义$(n \ times m,\ {3,4,5 \},1)$ -PDF的存在。结果,获得了一些可变重量完美$(N \ times m,k,1)$ - gocs。\ vspace {0.2cm} {\ bf关键字}:广义的完美差异家庭,广义的完美差异包装,几何正交代码,半完美组可分割的设计

Motivated by the application in geometric orthogonal codes (GOCs), Wang et al. introduced the concept of generalized perfect difference families (PDFs), and established the equivalence between GOCs and a certain type of generalized PDFs recently. Based on the relationship, we discuss the existence problem of generalized $(n\times m,K,1)$-PDFs in this paper. By using some auxiliary designs such as semi-perfect group divisible designs and several recursive constructions, we prove that a generalized $(n\times m, \{3,4\}, 1)$-PDF exists if and only if $nm\equiv1\pmod{6}$. The existence of a generalized $(n\times m, \{3,4,5\}, 1)$-PDF is also completely solved possibly except for a few values. As a consequence, some variable-weight perfect $(n\times m,K,1)$-GOCs are obtained.\vspace{0.2cm} {\bf Keywords}: generalized perfect difference family, generalized perfect difference packing, geometric orthogonal code, semi-perfect group divisible design

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源