论文标题

主要间隙的序列是图形

The sequence of prime gaps is graphic

论文作者

Erdős, Péter L., Harcos, Gergely, Kharel, Shubha R., Maga, Péter, Mezei, Tamás R., Toroczkai, Zoltán

论文摘要

让我们在$ n \ geq 2 $顶点上调用一个简单的图形,如果其顶点度为$ 1 $,而第一个$ n-1 $ prime差距为prime Gap图。我们证明,每个大型$ n $都存在这样的图表,实际上,如果我们假设Riemann假设,则实际上每$ n \ geq 2 $。此外,可以通过保留生长过程来生成无限差距图的无限序列。这是首次将天然存在的无限整数序列确定为图形。也就是说,我们显示了一个有趣且独特的无限组合对象的存在。

Let us call a simple graph on $n\geq 2$ vertices a prime gap graph if its vertex degrees are $1$ and the first $n-1$ prime gaps. We show that such a graph exists for every large $n$, and in fact for every $n\geq 2$ if we assume the Riemann hypothesis. Moreover, an infinite sequence of prime gap graphs can be generated by the so-called degree preserving growth process. This is the first time a naturally occurring infinite sequence of positive integers is identified as graphic. That is, we show the existence of an interesting, and so far unique, infinite combinatorial object.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源