论文标题
IBMQ和Diamond NVS中的实验量子模式识别
Experimental quantum pattern recognition in IBMQ and diamond NVs
论文作者
论文摘要
量子计算最有希望的应用之一是处理图像之类的图形数据。在这里,我们研究了基于交换测试实现量子模式识别方案的可能性,并使用IBMQ嘈杂的中间尺度量子(NISQ)设备来验证该想法。我们发现,使用两数分方案,交换测试可以有效地检测出具有良好保真度的两个模式之间的相似性,尽管对于三个或更多量子,真实设备中的噪声变得有害。为了减轻这种噪声效果,我们求助于破坏性交换测试,这显示了三Q量状态的性能改善。由于云对较大的IBMQ处理器的访问有限,因此我们采用细分方面的方法在更高的尺寸图像上应用破坏性交换测试。在这种情况下,我们定义了一个平均重叠度量,该测度表明忠实于在实际IBMQ处理器上模拟两个非常不同或非常相似的模式。作为测试图像,我们使用具有简单模式,灰度MNIST数字和MNIST时尚图像的二进制图像,以及从磁共振成像(MRI)获得的人类血管的二进制图像。我们还提出了一个实验设置,用于使用钻石中的氮空位中心(NVS)应用破坏性交换测试。我们的实验数据显示了单个量子状态的高保真度。最后,我们提出了一种从量子关联内存启发的协议,该协议以类似的方式起作用,可用于使用破坏性交换测试进行量子模式识别的监督学习。
One of the most promising applications of quantum computing is the processing of graphical data like images. Here, we investigate the possibility of realizing a quantum pattern recognition protocol based on swap test, and use the IBMQ noisy intermediate-scale quantum (NISQ) devices to verify the idea. We find that with a two-qubit protocol, swap test can efficiently detect the similarity between two patterns with good fidelity, though for three or more qubits the noise in the real devices becomes detrimental. To mitigate this noise effect, we resort to destructive swap test, which shows an improved performance for three-qubit states. Due to limited cloud access to larger IBMQ processors, we take a segment-wise approach to apply the destructive swap test on higher dimensional images. In this case, we define an average overlap measure which shows faithfulness to distinguish between two very different or very similar patterns when simulated on real IBMQ processors. As test images, we use binary images with simple patterns, greyscale MNIST numbers and MNIST fashion images, as well as binary images of human blood vessel obtained from magnetic resonance imaging (MRI). We also present an experimental set up for applying destructive swap test using the nitrogen vacancy centre (NVs) in diamond. Our experimental data show high fidelity for single qubit states. Lastly, we propose a protocol inspired from quantum associative memory, which works in an analogous way to supervised learning for performing quantum pattern recognition using destructive swap test.