论文标题
通过最佳运输的分布不确定性传播
Distributional Uncertainty Propagation via Optimal Transport
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper addresses the limitations of standard uncertainty models, e.g., robust (norm-bounded) and stochastic (one fixed distribution, e.g., Gaussian), and proposes to model uncertainty via Optimal Transport (OT) ambiguity sets. These constitute a very rich uncertainty model, which enjoys many desirable geometrical, statistical, and computational properties, and which: (1) naturally generalizes both robust and stochastic models, and (2) captures many additional real-world uncertainty phenomena (e.g., black swan events). Our contributions show that OT ambiguity sets are also analytically tractable: they propagate easily and intuitively through linear and nonlinear (possibly corrupted by noise) transformations, and the result of the propagation is again an OT ambiguity set or can be tightly upper bounded by an OT ambiguity set. In the context of dynamical systems, our results allow us to consider multiple sources of uncertainty (e.g., initial condition, additive noise, multiplicative noise) and to capture in closed-form, via an OT ambiguity set, the resulting uncertainty in the state at any future time. Our results are actionable, interpretable, and readily employable in a great variety of computationally tractable control and estimation formulations. To highlight this, we study three applications in trajectory planning, consensus algorithms, and least squares estimation. We conclude the paper with a list of exciting open problems enabled by our results.