论文标题
嘈杂的杂斜网络中的罕见过渡
Rare transitions in noisy heteroclinic networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study small white noise perturbations of planar dynamical systems with heteroclinic networks in the limit of vanishing noise. We show that the probabilities of transitions between various cells that the network tessellates the plane into decay as powers of the noise magnitude. We show that the most likely scenario for the realization of these rare transition events involves spending atypically long times in the neighborhoods of certain saddle points of the network. We describe the hierarchy of time scales and clusters of accessibility associated with these rare transition events. We discuss applications of our results to homogenization problems and to the invariant distribution asymptotics. At the core of our results are local limit theorems for exit distributions obtained via methods of Malliavin calculus.