论文标题
一次-3DLANES:构建单眼3D车道检测
ONCE-3DLanes: Building Monocular 3D Lane Detection
论文作者
论文摘要
我们介绍了一次-3dlanes,这是一个现实世界中的自动驾驶数据集,其中带有3D空间中的车道布局注释。从单眼图像中的常规2D车道检测,由于道路不平衡,在自动驾驶中的规划和控制任务的表现较差。因此,必须预测3D车道布局,并实现有效且安全的驾驶。但是,现有的3D车道检测数据集未出版或从模拟环境中合成,从而严重阻碍了该领域的发展。在本文中,我们采取步骤解决这些问题。通过利用点云与图像像素之间的显式关系,数据集注释管道旨在自动从211k Road场景中的2D车道注释中自动生成高质量的3D车道位置。此外,我们提出了一种称为沙拉的无外部,无锚的方法,在图像视图中回归了车道的3D坐标,而无需将特征映射转换为鸟眼视图(BEV)。为了促进对3D车道检测的未来研究,我们对数据集进行了基准测试,并提供了一种新颖的评估指标,对现有方法和我们提出的方法进行了广泛的实验。我们工作的目的是在现实世界中恢复3D车道检测的利益。我们认为,我们的工作可以导致学术界和行业的预期和意外创新。
We present ONCE-3DLanes, a real-world autonomous driving dataset with lane layout annotation in 3D space. Conventional 2D lane detection from a monocular image yields poor performance of following planning and control tasks in autonomous driving due to the case of uneven road. Predicting the 3D lane layout is thus necessary and enables effective and safe driving. However, existing 3D lane detection datasets are either unpublished or synthesized from a simulated environment, severely hampering the development of this field. In this paper, we take steps towards addressing these issues. By exploiting the explicit relationship between point clouds and image pixels, a dataset annotation pipeline is designed to automatically generate high-quality 3D lane locations from 2D lane annotations in 211K road scenes. In addition, we present an extrinsic-free, anchor-free method, called SALAD, regressing the 3D coordinates of lanes in image view without converting the feature map into the bird's-eye view (BEV). To facilitate future research on 3D lane detection, we benchmark the dataset and provide a novel evaluation metric, performing extensive experiments of both existing approaches and our proposed method. The aim of our work is to revive the interest of 3D lane detection in a real-world scenario. We believe our work can lead to the expected and unexpected innovations in both academia and industry.