论文标题

部分可观测时空混沌系统的无模型预测

Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound

论文作者

Ferrari, Claudio, Muller, Mark Niklas, Jovanovic, Nikola, Vechev, Martin

论文摘要

最先进的神经网络验证器从根本上是基于两个范式之一:要么通过紧密的多神经元凸松弛来编码整个验证问题,要么在大量更轻松的子问题上应用不精确但快速界限的方法来利用不精确但快速界限的方法。前者可以捕获复杂的多神经元依赖性,但由于凸松弛的固有局限性,牺牲是完整性。后者可以进行完整的验证,但在更大,更具挑战性的网络上越来越无效。在这项工作中,我们提出了一个新颖的完整验证器,结合了这两种范式的优势:它利用多神经元的放松,以大大减少BAB工艺过程中产生的子问题的数量和有效的基于GPU的双重优化器来求解其余的子问题。广泛的评估表明,我们的验证者在既定的基准和网络上都具有比以前考虑的明显更高的网络实现了新的最先进。后一个结果(最多28%的认证获得)表明在创建可以处理实际相关网络的验证者方面有意义的进展。

State-of-the-art neural network verifiers are fundamentally based on one of two paradigms: either encoding the whole verification problem via tight multi-neuron convex relaxations or applying a Branch-and-Bound (BaB) procedure leveraging imprecise but fast bounding methods on a large number of easier subproblems. The former can capture complex multi-neuron dependencies but sacrifices completeness due to the inherent limitations of convex relaxations. The latter enables complete verification but becomes increasingly ineffective on larger and more challenging networks. In this work, we present a novel complete verifier which combines the strengths of both paradigms: it leverages multi-neuron relaxations to drastically reduce the number of subproblems generated during the BaB process and an efficient GPU-based dual optimizer to solve the remaining ones. An extensive evaluation demonstrates that our verifier achieves a new state-of-the-art on both established benchmarks as well as networks with significantly higher accuracy than previously considered. The latter result (up to 28% certification gains) indicates meaningful progress towards creating verifiers that can handle practically relevant networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源