论文标题
具有非局部相关性的概率模型:Q-大偏差理论的数值证据
Probabilistic Models with Nonlocal Correlations: Numerical Evidence of q-Large Deviation Theory
论文作者
论文摘要
Hanel等人(2009年)中引入和分析讨论的相关概率模型基于索引$ Q $的自偶式转换,该索引$ q $的当前特征是Boltzmann-Gibbs统计力学的当前概括,即无Xtentive统计力学,即,在$ n \ of iftty $ quss中,$ n $ q quouss in a $ - [1,3)$。我们在这里表明,通过适当地概括自偶的转换,可以在$ n \ to \ infty $限制中获得整个概率模型的全家。事实证明,这个家庭通过特定的单调转换$ q_c(q)$是Hanel等人模型的同构。然后,通过遵循Tirnakli等人的路线(2022),我们从数值上表明,与$ q $概括的大型偏差理论(LDT)相关的概率模型家族提供了进一步的证据,并与热力学的典型结构保持一致。目前的分析加深了我们对复杂系统的理解(与其元素之间的全球相关性),支持了以下猜想,即在$ n $强烈相关的随机变量总结为$ q $ -Gaussians中,吸引子的吸引子是$ Q $ -Gaussians,在LDT的意义上可能总是与$ Q $ -Appients相一致。
The correlated probabilistic model introduced and analytically discussed in Hanel et al (2009) is based on a self-dual transformation of the index $q$ which characterizes a current generalization of Boltzmann-Gibbs statistical mechanics, namely nonextensive statistical mechanics, and yields, in the $N\to\infty$ limit, a $Q$-Gaussian distribution for any chosen value of $Q \in [1,3)$. We show here that, by properly generalizing that self-dual transformation, it is possible to obtain an entire family of such probabilistic models, all of them yielding $Q_c$-Gaussians ($Q_c \ge 1$) in the $N\to\infty$ limit. This family turns out to be isomorphic to the Hanel et al model through a specific monotonic transformation $Q_c(Q)$. Then, by following along the lines of Tirnakli et al (2022), we numerically show that this family of correlated probabilistic models provides further evidence towards a $q$-generalized Large Deviation Theory (LDT), consistently with the Legendre structure of thermodynamics. The present analysis deepens our understanding of complex systems (with global correlations among their elements), supporting the conjecture that generic models whose attractors under summation of $N$ strongly-correlated random variables are $Q$-Gaussians, might always be concomitantly associated with $q$-exponentials in the LDT sense.