论文标题

零击任务概括的迅速一致性

Prompt Consistency for Zero-Shot Task Generalization

论文作者

Zhou, Chunting, He, Junxian, Ma, Xuezhe, Berg-Kirkpatrick, Taylor, Neubig, Graham

论文摘要

最近的NLP历史记录最令人印象深刻的结果之一是,预训练的语言模型在零拍设置中解决新任务的能力。为了实现这一目标,NLP任务被构成自然语言提示,从而产生指示预测输出的响应。尽管如此,在这种情况下的性能通常远远落后于其受监督的对应物,这表明有可能改善的空间。在本文中,我们探讨了利用未标记数据来提高零击性能的方法。具体而言,我们利用了一个事实,即可以使用多个提示来指定一项任务,并建议将及时的一致性正规化,鼓励对这套多样的提示进行一致的预测。我们的方法使可以使用额外的未标记培训数据来微调模型,或直接以无监督的方式在推理时间进行测试输入。在实验中,我们的方法在4个NLP任务中的11个数据集中的9个数据集中的9个数据集中的9个数据集中,最先进的零照片学习者T0(Sanh等人,2022年)都优于最高的零摄像。收益通常以少数未标记的例子获得。

One of the most impressive results of recent NLP history is the ability of pre-trained language models to solve new tasks in a zero-shot setting. To achieve this, NLP tasks are framed as natural language prompts, generating a response indicating the predicted output. Nonetheless, the performance in such settings often lags far behind its supervised counterpart, suggesting a large space for potential improvement. In this paper, we explore methods to utilize unlabeled data to improve zero-shot performance. Specifically, we take advantage of the fact that multiple prompts can be used to specify a single task, and propose to regularize prompt consistency, encouraging consistent predictions over this diverse set of prompts. Our method makes it possible to fine-tune the model either with extra unlabeled training data, or directly on test input at inference time in an unsupervised manner. In experiments, our approach outperforms the state-of-the-art zero-shot learner, T0 (Sanh et al., 2022), on 9 out of 11 datasets across 4 NLP tasks by up to 10.6 absolute points in terms of accuracy. The gains are often attained with a small number of unlabeled examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源