论文标题

越野$ \ unicode {x2013} $ rips rips complex complexteres a resces a rips complex a

Vietoris$\unicode{x2013}$Rips Complexes of Metric Spaces Near a Metric Graph

论文作者

Majhi, Sushovan

论文摘要

对于足够小的规模$β> 0 $,越野$ \ unicode {x2013} $ rips complex $ \ mathcal {r}_β(s s) 类型。虽然定性结果是显着的,并且自然而然地概括为恢复Riemannian歧管以外的空间$ \ unicode {x2014} $,例如地理公制空间,具有正凸radius $ \ unicode {x2014} $,一般性是为代价的。尽管已知比例参数$β$仅取决于地球空间的几何特性,但如何定量选择为给定的地理空间选择这种$β$仍然难以捉摸。在这项工作中,我们专注于一种特殊类型的大地测量空间的拓扑恢复,称为度量图。对于抽象度量图$ \ MATHCAL {g} $和A(示例)度量空间$ s $,带有一个小的gromov $ \ unicode {x2013} $ hausdorff的距离,我们将根据$ \ nathcal {g} $ for $ \ math的convexity radius of convexity radius of $β$的描述,以$ \ maths}(相当于$ \ Mathcal {g} $。我们的调查还扩展到对越野的研究{x2013} $撕裂的欧几里得子集$ s \ subset \ subset \ subset \ subset \ mathbb {r}^d $,带有小的hausdorff距离嵌入式度量图$ \ mathcal {g} g} {g} \ subseet \ subseet \ subbb {从$ s $点的成对欧几里得距离中,我们介绍了基于路径的vietoris $ \ unicode {x2013} $ rips compleactes $ \ mathcal {r}^\varepsilon_β(s)的家庭(由$ \ varepsilon $)介绍一个家庭($ \ varepsilon $)。根据$ \ Mathcal {G} $嵌入的凸度半径和失真,我们展示了如何选择合适的参数$ \ varepsilon $和一个比例$β$,使得$ \ nathcal {r}^\varepsilon_β(s)$是同质$ \ nathcal的同性恋。

For a sufficiently small scale $β>0$, the Vietoris$\unicode{x2013}$Rips complex $\mathcal{R}_β(S)$ of a metric space $S$ with a small Gromov$\unicode{x2013}$Hausdorff distance to a closed Riemannian manifold $M$ has been already known to recover $M$ up to homotopy type. While the qualitative result is remarkable and generalizes naturally to the recovery of spaces beyond Riemannian manifolds$\unicode{x2014}$such as geodesic metric spaces with a positive convexity radius$\unicode{x2014}$the generality comes at a cost. Although the scale parameter $β$ is known to depend only on the geometric properties of the geodesic space, how to quantitatively choose such a $β$ for a given geodesic space is still elusive. In this work, we focus on the topological recovery of a special type of geodesic space, called a metric graph. For an abstract metric graph $\mathcal{G}$ and a (sample) metric space $S$ with a small Gromov$\unicode{x2013}$Hausdorff distance to it, we provide a description of $β$ based on the convexity radius of $\mathcal{G}$ in order for $\mathcal{R}_β(S)$ to be homotopy equivalent to $\mathcal{G}$. Our investigation also extends to the study of the Vietoris$\unicode{x2013}$Rips complexes of a Euclidean subset $S\subset\mathbb{R}^d$ with a small Hausdorff distance to an embedded metric graph $\mathcal{G}\subset\mathbb{R}^d$. From the pairwise Euclidean distances of points of $S$, we introduce a family (parametrized by $\varepsilon$) of path-based Vietoris$\unicode{x2013}$Rips complexes $\mathcal{R}^\varepsilon_β(S)$ for a scale $β>0$. Based on the convexity radius and distortion of the embedding of $\mathcal{G}$, we show how to choose a suitable parameter $\varepsilon$ and a scale $β$ such that $\mathcal{R}^\varepsilon_β(S)$ is homotopy equivalent to $\mathcal{G}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源