论文标题

术前脑肿瘤成像:用于分割和标准化报告的模型和软件

Preoperative brain tumor imaging: models and software for segmentation and standardized reporting

论文作者

Bouget, D., Pedersen, A., Jakola, A. S., Kavouridis, V., Emblem, K. E., Eijgelaar, R. S., Kommers, I., Ardon, H., Barkhof, F., Bello, L., Berger, M. S., Nibali, M. C., Furtner, J., Hervey-Jumper, S., Idema, A. J. S., Kiesel, B., Kloet, A., Mandonnet, E., Müller, D. M. J., Robe, P. A., Rossi, M., Sciortino, T., Brink, W. Van den, Wagemakers, M., Widhalm, G., Witte, M. G., Zwinderman, A. H., Hamer, P. C. De Witt, Solheim, O., Reinertsen, I.

论文摘要

对于患有脑肿瘤的患者,预后估计和治疗决定是由一组术前MR扫描做出的多学科团队。当前,缺乏用于肿瘤检测的标准化和自动方法,临床报告的产生代表了一个主要障碍。在这项研究中,我们通过多达4000名患者研究了胶质母细胞瘤,低级神经胶质瘤,脑膜瘤和转移酶。使用具有不同预处理步骤和协议的AGU-NET体系结构对肿瘤分割模型进行培训。使用广泛的体素和患者指标涵盖体积,距离和概率方面的大量体素指标,对分割性能进行深入评估。最后,已经开发了两种软件解决方案,从而可以轻松使用训练有素的模型和标准化的临床报告:Raidionics和Raidionics-Slinicer。分割性能在四种不同的脑肿瘤类型中相当均匀,平均真实骰子在80%至90%之间,患者的召回率在88%至98%之间,而患者的精度约为95%。借助我们的Raidionics软件,在具有CPU支持的台式计算机上运行,​​可以根据MRI量的尺寸在16至54秒内进行肿瘤分割。为了生成标准化的临床报告,包括肿瘤分割和特征计算,需要5至15分钟。所有训练有素的模型均已开放访问以及用于软件解决方案和验证指标计算的源代码。将来,需要对脑肿瘤类型进行自动分类以替换手动用户输入。最后,将术后分割纳入两个软件解决方案将是生成完整的术后标准化临床报告的关键。

For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports represents a major hurdle. In this study, we investigate glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80% and 90%, patient-wise recall between 88% and 98%, and patient-wise precision around 95%. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16 to 54 seconds depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5 to 15 minutes are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源