论文标题

在相互作用的两个组成式米莱哈伯德模型中拓扑电荷抽水的分裂

Splitting of topological charge pumping in an interacting two-component fermionic Rice-Mele Hubbard model

论文作者

Bertok, E., Heidrich-Meisner, F., Aligia, A. A.

论文摘要

当在奇异性上绝热时,无用的泵会运输整数充电。我们通过添加哈伯德相互作用来研究将这种临界点分解为两个单独的临界点。此外,我们考虑到稀疏的水稻模型的扩展,即交错的磁场或Ising型自旋耦合,从而进一步降低了自旋对称性。最终的模型还允许在两个组成的拼写费用系统中运输单个电荷,而在没有相互作用的情况下,泵次零或两个电荷。在SU(2) - 对称情况下,离子哈伯德模型一次沿着泵循环访问,该模型包围了单个奇异性。添加交错的磁场另外运输了大量的自旋,而伊辛术语则实现了纯电荷泵。我们在有限和无限系统中采用实时模拟来计算绝热电荷和自旋传输,并通过间隙分析和多体极化来互补,以确认泵的绝热性质。预计所得的电荷泵可以在超冷原子气体中的有限泵送速度实验中进行测量,SU(2)不变版本是最有前途的路径。我们讨论了我们的结果对Walter等人的相关量子总和实验的含义。 [arxiv:2204.06561]。

A Thouless pump transports an integer amount of charge when pumping adiabatically around a singularity. We study the splitting of such a critical point into two separate critical points by adding a Hubbard interaction. Furthermore, we consider extensions to a spinful Rice-Mele model, namely a staggered magnetic field or an Ising-type spin coupling, further reducing the spin symmetry. The resulting models additionally allow for the transport of a single charge in a two-component system of spinful fermions, whereas in the absence of interactions, zero or two charges are pumped. In the SU(2)-symmetric case, the ionic Hubbard model is visited once along pump cycles that enclose a single singularity. Adding a staggered magnetic field additionally transports an integer amount of spin while the Ising term realizes a pure charge pump. We employ real-time simulations in finite and infinite systems to calculate the adiabatic charge and spin transport, complemented by the analysis of gaps and the many-body polarization to confirm the adiabatic nature of the pump. The resulting charge pumps are expected to be measurable in finite-pumping speed experiments in ultra-cold atomic gases, for which the SU(2) invariant version is the most promising path. We discuss the implications of our results for a related quantum-gas experiment by Walter et al. [arXiv:2204.06561].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源