论文标题

$ s $ - 和$ p $ - QCD Sum规则的全盘tetrange tetrange

$S$- and $P$-wave fully-strange tetraquark states from QCD sum rules

论文作者

Su, Niu, Chen, Hua-Xing

论文摘要

我们将QCD总规则方法应用于系统地研究$ s $ - 和$ p $ - 波动的diquark-antidiquark图片中的全势tetrangeTrange Tetrangar。我们通过明确添加协方差衍生操作员来系统地构建它们的插值电流。我们的结果表明,$ f_0(2100)$,$ x(2063)$和$ f_2(2010)$可以解释为$ s $ -wave $ s s s s \ b s \ bar s $ tetraquark s $ tetraquark state contraum number $ j^{pc} = 0^{++} $ j^{pc} = 0.我们的结果还表明,$ x(2370)$和$ x(2500)$都可以解释为$ p $ -Wave $ s s s s s s \ bar s \ bar s $ tetraquark state $ j^{pc} = 0^{ - +} $的$ j^{ - +} $,以及$ ϕ(2170)和$ x(2400)$ $ $ s $ s $ s $ s $ s $ s $ s s s s s s s s s s s s s s s s s s s s s s s S. $ j^{pc} = 1^{ - } $的tetraquark状态。 $ s s \ bar s \ bar s $ tetraquark的质量具有异国情调的量子数$ j^{pc} = 1^{ - +} $,是从两个非相关电流中提取的,为$ 2.45^{+0.20} _ {+0.20} _ { - 0.25} $ gEV和$ 2.49^$ 2.49^$ 0.21} $ g {+0.21} = {+0.21} {+0.25 {+0.21}

We apply the QCD sum rule method to systematically study the $S$- and $P$-wave fully-strange tetraquark states within the diquark-antidiquark picture. We systematically construct their interpolating currents by explicitly adding the covariant derivative operator. Our results suggest that the $f_0(2100)$, $X(2063)$, and $f_2(2010)$ may be explained as the $S$-wave $s s \bar s \bar s$ tetraquark states with the quantum numbers $J^{PC} = 0^{++}$, $1^{+-}$, and $2^{++}$, respectively. Our results also suggest that both the $X(2370)$ and $X(2500)$ may be explained as the $P$-wave $s s \bar s \bar s$ tetraquark states of $J^{PC} = 0^{-+}$, and both the $ϕ(2170)$ and $X(2400)$ may be explained as the $P$-wave $s s \bar s \bar s$ tetraquark states of $J^{PC} = 1^{--}$. The masses of the $s s \bar s \bar s$ tetraquark states with the exotic quantum number $J^{PC} = 1^{-+}$ are extracted from two non-correlated currents to be $2.45^{+0.20}_{-0.25}$ GeV and $2.49^{+0.21}_{-0.25}$ GeV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源