论文标题

对过滤气泡的用户控制建议

User-controllable Recommendation Against Filter Bubbles

论文作者

Wang, Wenjie, Feng, Fuli, Nie, Liqiang, Chua, Tat-Seng

论文摘要

推荐系统通常会面临过滤气泡的问题:基于用户功能和历史互动的均质项目过度注销。过滤器气泡将沿反馈回路增长,并无意间缩小用户兴趣。现有的工作通常通过纳入除准确性(例如多样性和公平)之外的目标来减轻过滤气泡。但是,他们通常会牺牲准确性,伤害模型保真度和用户体验。更糟糕的是,用户必须被动地接受建议策略,并以高潜伏期的效率低下的方式影响系统,例如,继续提供反馈(例如,喜欢和不喜欢),直到系统识别用户意图为止。 这项工作提出了一个称为UserControllable推荐系统(UCRS)的新推荐原型,该原型使用户能够积极控制过滤气泡的缓解。从功能上讲,1)UCR可以提醒用户,如果用户深深地卡在过滤器气泡中。 2)UCR支持四种控制命令,以供用户减轻不同粒度的气泡。 3)UCR可以响应控件并即时调整建议。调整的关键在于阻止过时的用户表示对建议的影响,该建议包含与控制命令不一致的历史信息。因此,我们开发了一种因果关系增强的用户控制推理(UCI)框架,该框架可以在推理阶段基于用户控件来快速修改建议,并利用反事实推理来减轻过时用户表现的影响。在三个数据集上进行的实验验证了UCI框架可以根据用户控件有效推荐更多所需的项目,显示出令人鼓舞的性能W.R.T.准确性和多样性。

Recommender systems usually face the issue of filter bubbles: overrecommending homogeneous items based on user features and historical interactions. Filter bubbles will grow along the feedback loop and inadvertently narrow user interests. Existing work usually mitigates filter bubbles by incorporating objectives apart from accuracy such as diversity and fairness. However, they typically sacrifice accuracy, hurting model fidelity and user experience. Worse still, users have to passively accept the recommendation strategy and influence the system in an inefficient manner with high latency, e.g., keeping providing feedback (e.g., like and dislike) until the system recognizes the user intention. This work proposes a new recommender prototype called UserControllable Recommender System (UCRS), which enables users to actively control the mitigation of filter bubbles. Functionally, 1) UCRS can alert users if they are deeply stuck in filter bubbles. 2) UCRS supports four kinds of control commands for users to mitigate the bubbles at different granularities. 3) UCRS can respond to the controls and adjust the recommendations on the fly. The key to adjusting lies in blocking the effect of out-of-date user representations on recommendations, which contains historical information inconsistent with the control commands. As such, we develop a causality-enhanced User-Controllable Inference (UCI) framework, which can quickly revise the recommendations based on user controls in the inference stage and utilize counterfactual inference to mitigate the effect of out-of-date user representations. Experiments on three datasets validate that the UCI framework can effectively recommend more desired items based on user controls, showing promising performance w.r.t. both accuracy and diversity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源