论文标题
与范德华相互作用的关键定位
Critical localization with Van der Waals interactions
论文作者
论文摘要
我讨论了具有严重远距离相互作用的强烈无序量子系统的量子动力学,在$ D $空间维度中衰减为$ 1/r^{2d} $。我认为,与期望相反,这种系统中的本地化在扰动理论中的低阶稳定,从而产生了一种不寻常的“批判性许多人体局部化制度”。我讨论了这种关键MBL制度的现象学,其中包括纠缠,电荷统计,噪声和运输方面的独特签名。在实验上,可以在具有范德华相互作用(例如Rydberg原子)的三维系统中实现这种批判性的局限化制度,以及在具有$ 1/r^2 $交互的一维系统中,例如捕获的离子。我估计高阶扰动和非扰动(雪崩)现象可能会破坏这种关键的MBL制度的稳定性,并得出结论,雪崩设定了有限的时间表,该限制是强大的疾病 /弱相互作用的限制。
I discuss the quantum dynamics of strongly disordered quantum systems with critically long range interactions, decaying as $1/r^{2d}$ in $d$ spatial dimensions. I argue that, contrary to expectations, localization in such systems is stable at low orders in perturbation theory, giving rise to an unusual `critically many body localized regime.' I discuss the phenomenology of this critical MBL regime, which includes distinctive signatures in entanglement, charge statistics, noise, and transport. Experimentally, such a critically localized regime can be realized in three dimensional systems with Van der Waals interactions, such as Rydberg atoms, and in one dimensional systems with $1/r^2$ interactions, such as trapped ions. I estimate timescales on which high order perturbative and non-perturbative (avalanche) phenomena may destabilize this critically MBL regime, and conclude that the avalanche sets the limiting timescale, in the limit of strong disorder / weak interactions.