论文标题

积分二元二元形式与结多项式之间的新型联系

A novel connection between integral binary quadratic forms and knot polynomials

论文作者

Datta, Amitesh

论文摘要

我们在代数数理论与结理论之间建立了一种新颖的联系。我们表明,积分二进制二进制二进制形式的等价类别的差异$ t^2-4 $(对于$ t \ neq \ pm 2 $)等于$ \ mathbb {s}^3 $中的同位素类别链接的数量(根据规定的$ t $ t三个类别链接noctical novariants的$ t $)。平等源于整体二进制二进制形式之间的天然代数对应关系($ t \ neq \ pm 2 $的判别$ t^2-4 $)和辫子索引的链接类别最多三种。特别是,某些二次数字字段的类数量精确地衡量了亚历山大/琼斯多项式以区分辫子索引的非同位素链接的失败。

We establish a novel connection between algebraic number theory and knot theory. We show that the number of equivalence classes of integral binary quadratic forms of discriminant $t^2 - 4$ (for $t\neq \pm 2$) is equal to the number of isotopy classes of links in $\mathbb{S}^3$ with prescribed values (depending on $t$) of three classical link invariants. The equality arises from a natural algebraic correspondence between integral binary quadratic forms (of discriminant $t^2 - 4$ for $t\neq \pm 2$) and isotopy classes of links of braid index at most three. In particular, the class numbers of certain quadratic number fields precisely measure the failure of the Alexander/Jones polynomial to distinguish non-isotopic links of braid index at most three.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源