论文标题

通过可区分逻辑程序语义学习一阶规则

Learning First-Order Rules with Differentiable Logic Program Semantics

论文作者

Gao, Kun, Inoue, Katsumi, Cao, Yongzhi, Wang, Hanpin

论文摘要

从关系事实中学习一阶逻辑程序(LPS),这些事实能够对数据产生直观的见解,这是神经符号研究的一个挑战性主题。我们引入了一种新型的可区分归纳逻辑编程(ILP)模型,称为一阶规则学习者(DFOL),该模型通过搜索LPS的可解释矩阵表示,从关系事实中找到了正确的LP。这些可解释的矩阵被视为神经网络(NNS)中的可训练张量。 NN是根据LPS的可区分语义设计的。具体而言,我们首先采用了一种新颖的命题方法,该方法将事实转移到代表解释对的NN可读矢量对。我们用NN约束功能替换了直接的后果操作员,该功能由代数操作和类似Sigmoid的激活函数组成。我们将LP的符号前向链式格式映射到NN约束函数,该功能由原子的亚符号矢量表示之间的操作组成。通过应用梯度下降,可以将训练的NN的井参数解码为前链逻辑格式的精确符号LP。我们证明,DFOL可以在几个标准的ILP数据集,知识库和概率关系事实上执行,并且表现优于几个众所周知的可区分ILP模型。实验结果表明,DFOL是一种精确,可靠,可扩展和计算上便宜的ILP模型。

Learning first-order logic programs (LPs) from relational facts which yields intuitive insights into the data is a challenging topic in neuro-symbolic research. We introduce a novel differentiable inductive logic programming (ILP) model, called differentiable first-order rule learner (DFOL), which finds the correct LPs from relational facts by searching for the interpretable matrix representations of LPs. These interpretable matrices are deemed as trainable tensors in neural networks (NNs). The NNs are devised according to the differentiable semantics of LPs. Specifically, we first adopt a novel propositionalization method that transfers facts to NN-readable vector pairs representing interpretation pairs. We replace the immediate consequence operator with NN constraint functions consisting of algebraic operations and a sigmoid-like activation function. We map the symbolic forward-chained format of LPs into NN constraint functions consisting of operations between subsymbolic vector representations of atoms. By applying gradient descent, the trained well parameters of NNs can be decoded into precise symbolic LPs in forward-chained logic format. We demonstrate that DFOL can perform on several standard ILP datasets, knowledge bases, and probabilistic relation facts and outperform several well-known differentiable ILP models. Experimental results indicate that DFOL is a precise, robust, scalable, and computationally cheap differentiable ILP model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源