论文标题
经常复发的特性和阻止家庭
Frequently recurrence properties and block families
论文作者
论文摘要
我们证明,重复性的超循环运算符具有完美的频谱。因此,因此,存在可分离的无限尺寸Banach空间,这些空间不支持任何重复性的超循环运算符。为此,我们研究了$ \ Mathcal F $ -Recurrence和几乎$ \ Mathcal {f} $ - 对一般家庭的运营商复发,尤其是针对特殊类别的家庭(称为Block Family)。
We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study $\mathcal F$-recurrence and almost $\mathcal {F}$-recurrence of operators for general families and in particular for a special class of families, called block families.