论文标题

TJ4DRADSET:用于自动驾驶的4D雷达数据集

TJ4DRadSet: A 4D Radar Dataset for Autonomous Driving

论文作者

Zheng, Lianqing, Ma, Zhixiong, Zhu, Xichan, Tan, Bin, Li, Sen, Long, Kai, Sun, Weiqi, Chen, Sihan, Zhang, Lu, Wan, Mengyue, Huang, Libo, Bai, Jie

论文摘要

下一代高分辨率汽车雷达(4D雷达)可以提供额外的高程测量和较密集的点云,这具有在自动驾驶中3D传感的巨大潜力。在本文中,我们介绍了一个名为TJ4Dradset的数据集,其中有4D雷达点用于自动驾驶研究。该数据集是在各种驾驶场景中收集的,连续44个序列中总共有7757个同步框架,并用3D边界框和轨道ID进行了很好的注释。我们为数据集提供了基于4D雷达的3D对象检测基线,以证明深度学习方法对4D雷达点云的有效性。可以通过以下链接访问数据集:https://github.com/tjradarlab/tj4dradset。

The next-generation high-resolution automotive radar (4D radar) can provide additional elevation measurement and denser point clouds, which has great potential for 3D sensing in autonomous driving. In this paper, we introduce a dataset named TJ4DRadSet with 4D radar points for autonomous driving research. The dataset was collected in various driving scenarios, with a total of 7757 synchronized frames in 44 consecutive sequences, which are well annotated with 3D bounding boxes and track ids. We provide a 4D radar-based 3D object detection baseline for our dataset to demonstrate the effectiveness of deep learning methods for 4D radar point clouds. The dataset can be accessed via the following link: https://github.com/TJRadarLab/TJ4DRadSet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源