论文标题
分析MC系统采用了由异质受体覆盖的接收器的分析
Analysis of MC Systems Employing Receivers Covered by Heterogeneous Receptors
论文作者
论文摘要
本文研究了使用多个非重叠受体覆盖的吸收接收器(RX)的分子通信(MC)系统的通道脉冲响应(CIR),即分子通信(MC)系统的分子打击率。在该系统中,受体是异质的,即它们可能具有不同的大小和任意位置。此外,我们考虑了两种类型的发射器(TX),即点TX和膜融合(MF)的球形TX。我们假设点TX或基于MF的TX的中心与RX中心的固定距离。鉴于此固定距离,TX可以在不同的位置,RX的CIR取决于TX的确切位置。通过在所有可能的TX位置上平均,我们分析了RX处的预期分子打击率是受体的大小和位置的函数,我们假设在信号分子传播过程中可能发生分子降解。值得注意的是,我们的分析对于不同数字,大小和任意位置的受体有效,并且通过基于粒子的模拟确认其精度。利用我们的数值结果,我们表明,当固定受体覆盖的Rx表面上的总面积时,RX处的吸收分子的预期数量会随着受体数量而增加。基于衍生的分析表达式,我们通过检查RX吸收分子的预期数量来比较不同的几何受体分布。我们表明,均匀分布的受体会导致比其他分布更大的吸收分子。我们进一步比较了结合不同类型的TX和RXS的三个模型。
This paper investigates the channel impulse response (CIR), i.e., the molecule hitting rate, of a molecular communication (MC) system employing an absorbing receiver (RX) covered by multiple non overlapping receptors. In this system, receptors are heterogeneous, i.e., they may have different sizes and arbitrary locations. Furthermore, we consider two types of transmitter (TX), namely a point TX and a membrane fusion (MF)-based spherical TX. We assume the point TX or the center of the MF-based TX has a fixed distance to the center of the RX. Given this fixed distance, the TX can be at different locations and the CIR of the RX depends on the exact location of the TX. By averaging over all possible TX locations, we analyze the expected molecule hitting rate at the RX as a function of the sizes and locations of the receptors, where we assume molecule degradation may occur during the propagation of the signaling molecules. Notably, our analysis is valid for different numbers, a wide range of sizes, and arbitrary locations of the receptors, and its accuracy is confirmed via particle-based simulations. Exploiting our numerical results, we show that the expected number of absorbed molecules at the RX increases with the number of receptors, when the total area on the RX surface covered by receptors is fixed. Based on the derived analytical expressions, we compare different geometric receptor distributions by examining the expected number of absorbed molecules at the RX. We show that evenly distributed receptors result in a larger number of absorbed molecules than other distributions. We further compare three models that combine different types of TXs and RXs.