论文标题

Katznelson-Tzafriri定理周围的一些发展

Some developments around the Katznelson-Tzafriri theorem

论文作者

Batty, Charles, Seifert, David

论文摘要

本文是Katznelson和Tzafriri在1986年证明的一篇关于发展的调查文章,表明$ \ lim_ {n \ to \ infty} \ | t^n(i-t)\ | = 0 $如果$ t $是Banach空间上的电力运算符,$σ(t)\ cap \ t \ subseteq \ {1 \} $。随后证明了原始定理的许多变化和后果,我们提供了操作者理论的这一分支。

This paper is a survey article on developments arising from a theorem proved by Katznelson and Tzafriri in 1986 showing that $\lim_{n\to\infty} \|T^n(I-T)\| =0$ if $T$ is a power-bounded operator on a Banach space and $σ(T) \cap \T \subseteq \{1\}$. Many variations and consequences of the original theorem have been proved subsequently, and we provide an account of this branch of operator theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源