论文标题

WMT2021指标任务的Robleurt提交

RoBLEURT Submission for the WMT2021 Metrics Task

论文作者

Wan, Yu, Liu, Dayiheng, Yang, Baosong, Bi, Tianchi, Zhang, Haibo, Chen, Boxing, Luo, Weihua, Wong, Derek F., Chao, Lidia S.

论文摘要

在本文中,我们介绍了共享指标任务的提交:Robleter(强大地优化Bleurt的培训)。在调查了可训练指标的最新进展之后,我们结论了至关重要的几个方面,可以通过以下方式获得表现良好的指标模型:1)共同利用源包含的模型和仅参考模型的优势,2)通过大规模的合成数据配对,并将模型与数据调整为模型策略进行微量的合成数据,并不断预先培训该模型。实验结果表明,我们的模型与WMT2020人类注释达到最新的相关性,在10对英语对中的8分中的8个。

In this paper, we present our submission to Shared Metrics Task: RoBLEURT (Robustly Optimizing the training of BLEURT). After investigating the recent advances of trainable metrics, we conclude several aspects of vital importance to obtain a well-performed metric model by: 1) jointly leveraging the advantages of source-included model and reference-only model, 2) continuously pre-training the model with massive synthetic data pairs, and 3) fine-tuning the model with data denoising strategy. Experimental results show that our model reaching state-of-the-art correlations with the WMT2020 human annotations upon 8 out of 10 to-English language pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源