论文标题

BAGNET:双向意识性指导网络恶性乳房病变细分

BAGNet: Bidirectional Aware Guidance Network for Malignant Breast lesions Segmentation

论文作者

Chen, Gongping, Liu, Yuming, Dai, Yu, Zhang, Jianxun, Cui, Liang, Yin, Xiaotao

论文摘要

乳房病变细分是计算机辅助诊断系统的重要步骤,它引起了很多关注。然而,由于异质结构和类似的强度分布的影响,对恶性乳房病变的准确分割是一项具有挑战性的任务。在本文中,提出了一个新型的双向意识指导网络(BAGNET),以分割乳房超声图像的恶性病变。具体而言,双向意识指南网络用于从输入粗大图中捕获全局(低级)和本地(高级)特征之间的上下文。全局特征图的引入可以减少周围组织(背景)在病变区域的干扰。为了评估网络的细分性能,我们使用六个常用的评估指标与公共乳房超声数据集上的几种最先进的医疗图像分割方法进行了比较。广泛的实验结果表明,我们的方法在恶性乳房超声图像上获得了最具竞争力的分割结果。

Breast lesions segmentation is an important step of computer-aided diagnosis system, and it has attracted much attention. However, accurate segmentation of malignant breast lesions is a challenging task due to the effects of heterogeneous structure and similar intensity distributions. In this paper, a novel bidirectional aware guidance network (BAGNet) is proposed to segment the malignant lesion from breast ultrasound images. Specifically, the bidirectional aware guidance network is used to capture the context between global (low-level) and local (high-level) features from the input coarse saliency map. The introduction of the global feature map can reduce the interference of surrounding tissue (background) on the lesion regions. To evaluate the segmentation performance of the network, we compared with several state-of-the-art medical image segmentation methods on the public breast ultrasound dataset using six commonly used evaluation metrics. Extensive experimental results indicate that our method achieves the most competitive segmentation results on malignant breast ultrasound images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源