论文标题
超出理想热浴近似超出的非平衡统计物理
Non-Equilibrium Statistical Physics Beyond the Ideal Heat Bath Approximation
论文作者
论文摘要
非平衡统计物理学(NESP)的重要模型受到常用但通常未识别的近平衡近似的限制。 Fokker-Planck和Langevin方程,爱因斯坦和随机飞行扩散模型以及生化网络的Schnakenberg模型认为波动是由于理想的平衡浴而引起的。但是这个完美的浴室概念远非均衡。更有原则的方法应从基本动力学模型中得出速率波动,而不是假设特定形式。在这里,使用最大口径作为基本原理,我们在不完美但更现实的环境中为NESP过程得出了校正,这对于远离平衡的系统尤为重要。除了通过其温度的单个平衡特性表征浴的热浴外,还必须使用浴缸的速度和尺寸来表征浴室处理快速或大波动的能力。
Important models of nonequilibrium statistical physics (NESP) are limited by a commonly used, but often unrecognized, near-equilibrium approximation. Fokker-Planck and Langevin equations, the Einstein and random-flight diffusion models, and the Schnakenberg model of biochemical networks suppose that fluctuations are due to an ideal equilibrium bath. But far from equilibrium, this perfect bath concept does not hold. A more principled approach should derive the rate fluctuations from an underlying dynamical model, rather than assuming a particular form. Here, using Maximum Caliber as the underlying principle, we derive corrections for NESP processes in an imperfect - but more realistic - environment, corrections which become particularly important for a system driven strongly away from equilibrium. Beyond characterizing a heat bath by the single equilibrium property of its temperature, the bath's speed and size must also be used to characterize the bath's ability to handle fast or large fluctuations.