论文标题
关于伯格曼的离散光谱 - 带有谐波符号的eplitz操作员
On discrete spectra of Bergman--Toeplitz operators with harmonic symbols
论文作者
论文摘要
在本文中,我们研究了伯格曼空间上具有谐波符号的某些有界Toeplitz操作员的离散频谱。利用经典的厌氧理论的方法以及Borichev-Golinskii-Kupin和Feedov-Golinskii的最新结果,我们在其Fredholm集的未绑定(外部)组件中获得了算子离散谱的分布的定量结果。
In the present article, we study the discrete spectrum of certain bounded Toeplitz operators with harmonic symbol on a Bergman space. Using the methods of classical perturbaton theory and recent results by Borichev-Golinskii-Kupin and Favorov-Golinskii, we obtain a quantitative result on the distribution of the discrete spectrum of the operator in the unbounded (outer) component of its Fredholm set.