论文标题

具有双重概率建模

Robust Face Anti-Spoofing with Dual Probabilistic Modeling

论文作者

Zhang, Yuanhan, Wu, Yichao, Yin, Zhenfei, Shao, Jing, Liu, Ziwei

论文摘要

随着深度学习的激增,面部反欺骗(FAS)的领域见证了巨大的进步。由于其数据驱动的性质,现有的FAS方法对数据集中的噪声很敏感,这将刺激学习过程。但是,很少有作品考虑在FAS中进行噪声建模。在这项工作中,我们尝试通过以概率方式从标签和数据角度自动解决噪声问题来填补这一空白。具体而言,我们提出了一个称为双概率建模(DPM)的统一框架,其中有两个专用模块,即DPM-LQ(标签质量识别学习)和DPM-DQ(数据质量的知识学习)。这两个模块均基于以下假设:数据和标签应形成相干概率分布。 DPM-LQ能够产生强大的特征表示,而不必过度拟合嘈杂的语义标签的分布。 DPM-DQ可以通过根据其质量分布来纠正嘈杂数据的预测信心,从“错误拒绝”和“错误接受”中消除数据噪声。这两个模块都可以无缝和高效地整合到现有的深网中。此外,我们提出了广义DPM,以解决实际使用中的噪声问题,而无需语义注释。广泛的实验表明,这种概率建模可以1)显着提高准确性,2)使模型可与现实世界数据集中的噪声稳健。我们提议的DPM没有铃铛和口哨声,可以在多个标准的FAS基准上实现最先进的性能。

The field of face anti-spoofing (FAS) has witnessed great progress with the surge of deep learning. Due to its data-driven nature, existing FAS methods are sensitive to the noise in the dataset, which will hurdle the learning process. However, very few works consider noise modeling in FAS. In this work, we attempt to fill this gap by automatically addressing the noise problem from both label and data perspectives in a probabilistic manner. Specifically, we propose a unified framework called Dual Probabilistic Modeling (DPM), with two dedicated modules, DPM-LQ (Label Quality aware learning) and DPM-DQ (Data Quality aware learning). Both modules are designed based on the assumption that data and label should form coherent probabilistic distributions. DPM-LQ is able to produce robust feature representations without overfitting to the distribution of noisy semantic labels. DPM-DQ can eliminate data noise from `False Reject' and `False Accept' during inference by correcting the prediction confidence of noisy data based on its quality distribution. Both modules can be incorporated into existing deep networks seamlessly and efficiently. Furthermore, we propose the generalized DPM to address the noise problem in practical usage without the need of semantic annotations. Extensive experiments demonstrate that this probabilistic modeling can 1) significantly improve the accuracy, and 2) make the model robust to the noise in real-world datasets. Without bells and whistles, our proposed DPM achieves state-of-the-art performance on multiple standard FAS benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源