论文标题
结构化的统一矩阵和量子纠缠
Structured Unitary Matrices and Quantum Entanglement
论文作者
论文摘要
我们探索以给定结构在量子信息领域的应用中的特征的统一矩阵集。在论文的第一部分中,我们着重于对单一矩阵的特殊类别的分类以及引入某些内部参数化的可能性。讨论了一些新的结果和猜想。论文的第二部分致力于多部分量子纠缠的概念。我们为四个子系统的绝对最大纠结状态提供了一个解决方案,每个级别具有六个级别。最后,我们分析了矩阵的过量和相应的铃铛不等式。这种组合使我们能够得出与量子非局部性有关的新结论。
We explore the set of unitary matrices characterized by a given structure in the context of their applications in the field of Quantum Information. In the first part of the Thesis we focus on classification of special classes of unitary matrices and possibility of introducing certain internal parameterizations. Several new results and conjectures are discussed. Second part of the Thesis is devoted to the concept of multipartite quantum entanglement. We present a solution to the problem of absolutely maximally entangled states of four subsystems with six levels each. Finally, we analyze the excess of a matrix and the corresponding Bell inequalities. This combination allows us to draw new conclusions related to quantum nonlocality.