论文标题

具有无界扩散项的Schrödinger类型运算符的一般内核估计值

General Kernel estimates of Schrödinger type operators with unbounded diffusion terms

论文作者

Caso, Loredana, Kunze, Markus, Porfido, Marianna, Rhandi, Abdelaziz

论文摘要

我们首先证明了$ a的实现$ a _ {\ min} $ a:= \ mathrm {div}(q \ nabla)-v $ in $ l^2(\ MATHBB {r}^d)$,带有未绑定的系数产生对称的submarkovian和ultraconsemaltive $ l^2($ l l^2)在$ l^2(\ mathbb {r}^d)\ cap c_b(\ mathbb {r}^d)$上,与通过$ c_b(\ mathbb {r}^d)上的$ a $ a $ a $ a $ a $ a产生的最小半群。此外,使用依赖时间的Lyapunov函数,我们证明了$ a $的热核的上限,并在多项式和指数扩散和潜在系数的情况下推断出$ a _ {\ min} $的某些光谱属性。

We prove first that the realization $A_{\min}$ of $A:=\mathrm{div}(Q\nabla)-V$ in $L^2(\mathbb{R}^d)$ with unbounded coefficients generates a symmetric sub-Markovian and ultracontractive semigroup on $L^2(\mathbb{R}^d)$ which coincides on $L^2(\mathbb{R}^d)\cap C_b(\mathbb{R}^d)$ with the minimal semigroup generated by a realization of $A$ on $C_b(\mathbb{R}^d)$. Moreover, using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernel of $A$ and deduce some spectral properties of $A_{\min}$ in the case of polynomially and exponentially diffusion and potential coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源