论文标题
在扰动的矩形域上的节点设置开口
Nodal Set Openings on Perturbed Rectangular Domains
论文作者
论文摘要
我们研究了矩形边界对拉普拉斯元素特征函数的淋巴结集的影响。也就是说,对于给定纵横比$ n $的矩形,我们确定了第一个Dirichlet模式,该模式在其淋巴结集中具有交叉点,并通过矩形的侧面之一靠近平坦,平滑的曲线。这种扰动通常会在节点集中“打开”交叉,将其分为两条曲线,我们研究这些曲线及其规律性之间的分离。所使用的主要技术是变量的近似分离,使我们能够将研究限制为本征函数扩展中的前两个傅立叶模式。我们展示了边界扰动的性质如何提供有关开口方向和估计其大小的条件的条件。特别是,扰动的淋巴结集的几个特征在渐近上与长宽比无关,这与先前的工作形成对比。还提出了支持我们发现的数值结果。
We study the effects of perturbing the boundary of a rectangle on the nodal sets of eigenfunctions of the Laplacian. Namely, for a rectangle of a given aspect ratio $N$, we identify the first Dirichlet mode to feature a crossing in its nodal set and perturb one of the sides of the rectangle by a close to flat, smooth curve. Such perturbations will often "open" the crossing in the nodal set, splitting it into two curves, and we study the separation between these curves and their regularity. The main technique used is an approximate separation of variables that allows us to restrict study to the first two Fourier modes in an eigenfunction expansion. We show how the nature of the boundary perturbation provides conditions on the orientation of the opening and estimates on its size. In particular, several features of the perturbed nodal set are asymptotically independent of the aspect ratio, which contrasts with prior works. Numerical results supporting our findings are also presented.